首页    期刊浏览 2024年07月18日 星期四
登录注册

文章基本信息

  • 标题:Laboratory study of the effects of flexible vegetation on solute diffusion in unidirectional flow
  • 本地全文:下载
  • 作者:Sha Lou ; Hao Wang ; Hongzhe Liu
  • 期刊名称:Environmental Sciences Europe
  • 印刷版ISSN:2190-4715
  • 出版年度:2021
  • 卷号:33
  • 期号:1
  • 页码:1
  • DOI:10.1186/s12302-021-00521-y
  • 出版社:BioMed Central
  • 摘要:Background Flexible vegetation is an important part of the riverine ecosystem, which can reduce flow velocity, change turbulence structure, and affect the processes of solute transport. Compared with the flow with rigid vegetation, which has been reported in many previous studies, bending of flexible vegetation increases the complexity of the flow–vegetation–solute interactions. In this study, laboratory experiments are carried out to investigate the influence of flexible vegetation on solute transport, and methods for estimating the lateral and longitudinal diffusion coefficients in the rigid vegetated flow are examined for their applications to the flow with flexible vegetation. Results The experimental observations find that vegetation can significantly reduce flow velocity, and the Manning coefficient increases with increasing vegetation density and decreases with inflow discharge. Under all the cases, the vertical peak of the solute concentration moves towards the bottom bed along the flow, and the values of vertical peak concentration longitudinally decreases from the injection point. The lateral diffusion coefficients D y increase with vegetation density, while the longitudinal diffusion coefficients D L are opposite. Both D y and D L increase with the inflow discharge. To estimate the D y and D L in the flow with flexible vegetation, an effective submerged vegetation height considering vegetation bending is incorporated in the methods proposed for flow with rigid vegetation (Lou et al. Environ Sci Eur 32:15, 2020). The modified approach can well predict the diffusion coefficients in the experiments with the relative errors in the range of 5%–12%. Conclusions The methods proposed in this study can be used to estimate the lateral and longitudinal diffusion coefficients in flows through both rigid and flexible vegetations using the effective submerged vegetation height.
  • 其他摘要:Abstract Background Flexible vegetation is an important part of the riverine ecosystem, which can reduce flow velocity, change turbulence structure, and affect the processes of solute transport. Compared with the flow with rigid vegetation, which has been reported in many previous studies, bending of flexible vegetation increases the complexity of the flow–vegetation–solute interactions. In this study, laboratory experiments are carried out to investigate the influence of flexible vegetation on solute transport, and methods for estimating the lateral and longitudinal diffusion coefficients in the rigid vegetated flow are examined for their applications to the flow with flexible vegetation. Results The experimental observations find that vegetation can significantly reduce flow velocity, and the Manning coefficient increases with increasing vegetation density and decreases with inflow discharge. Under all the cases, the vertical peak of the solute concentration moves towards the bottom bed along the flow, and the values of vertical peak concentration longitudinally decreases from the injection point. The lateral diffusion coefficients D y increase with vegetation density, while the longitudinal diffusion coefficients D L are opposite. Both D y and D L increase with the inflow discharge. To estimate the D y and D L in the flow with flexible vegetation, an effective submerged vegetation height considering vegetation bending is incorporated in the methods proposed for flow with rigid vegetation (Lou et al. Environ Sci Eur 32:15, 2020). The modified approach can well predict the diffusion coefficients in the experiments with the relative errors in the range of 5%–12%. Conclusions The methods proposed in this study can be used to estimate the lateral and longitudinal diffusion coefficients in flows through both rigid and flexible vegetations using the effective submerged vegetation height.
  • 其他关键词:Flexible vegetation, Flow velocity, Solute transport, Lateral difusion coefcient, Longitudinal difusion coefcient
国家哲学社会科学文献中心版权所有