首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Thresholds of Metal and Metalloid Toxicity In Field-Collected Anthropogenically Contaminated Soils: A Review
  • 本地全文:下载
  • 作者:Javier Santa-Cruz ; Patricia Peñaloza ; Maria V. Korneykova
  • 期刊名称:Geography, Environment, Sustainability
  • 印刷版ISSN:2071-9388
  • 电子版ISSN:2542-1565
  • 出版年度:2021
  • 卷号:14
  • 期号:2
  • 页码:6-21
  • DOI:10.24057/2071-9388-2021-023
  • 出版社:Lomonosov Moscow State University
  • 摘要:Ecotoxicological studies of soil metal toxicity conventionally rely on the use of uncontaminated soils gradually enriched with metals in the form of soluble salts. Although this method is very useful in many ways, it is continually complicated by the difficulty of extrapolating laboratory results to actual field-collected soils exposed to decades of contamination. Although many studies emphasize the importance of using field-contaminated soils for toxicity bioassays, the number of studies actually conducted based on this premise is relatively small. This review provides an in-depth recompilation of data on metal toxicity thresholds in field-contaminated soils. We have summarized the EC10, EC25, and EC50 values for metals, i.e., values of metal concentrations that reduce the response of specific organisms by 10%, 25%, and 50% of the value in uncontaminated soils. In our summary, most studies show that total metal content can predict organismal responses as well as bioavailable fractions. These results are consistent with the intensity/capacity/quantity concept proposed for plant nutrient uptake. In addition, microorganisms are thought to be more sensitive to metals than plants and invertebrates. However, our analysis shows that there is no statistically significant difference between the sensitivity of microorganisms and other organisms (plants and invertebrates) to any metal or metal pool. We expect that this information will be useful for environmental assessment and soil quality decisions. Finally, we encourage future studies to analyze dose-effect relationships in native field-collected soils with varying degrees of metal contamination from long-term anthropogenic pollution.
  • 其他摘要:Ecotoxicological studies of soil metal toxicity conventionally rely on the use of uncontaminated soils gradually enriched with metals in the form of soluble salts. Although this method is very useful in many ways, it is continually complicated by the difficulty of extrapolating laboratory results to actual field-collected soils exposed to decades of contamination. Although many studies emphasize the importance of using field-contaminated soils for toxicity bioassays, the number of studies actually conducted based on this premise is relatively small. This review provides an in-depth recompilation of data on metal toxicity thresholds in field-contaminated soils. We have summarized the EC 10 , EC 25 , and EC 50 values for metals, i.e., values of metal concentrations that reduce the response of specific organisms by 10%, 25%, and 50% of the value in uncontaminated soils. In our summary, most studies show that total metal content can predict organismal responses as well as bioavailable fractions. These results are consistent with the intensity/capacity/quantity concept proposed for plant nutrient uptake. In addition, microorganisms are thought to be more sensitive to metals than plants and invertebrates. However, our analysis shows that there is no statistically significant difference between the sensitivity of microorganisms and other organisms (plants and invertebrates) to any metal or metal pool. We expect that this information will be useful for environmental assessment and soil quality decisions. Finally, we encourage future studies to analyze dose-effect relationships in native field-collected soils with varying degrees of metal contamination from long-term anthropogenic pollution.
  • 关键词:artificially polluted soil;metal-enriched soil;metal-spiked soil;field-collected soil;field-contaminated soil;ecotoxicity thresholds
国家哲学社会科学文献中心版权所有