首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Real-time event detection using recurrent neural network in social sensors
  • 本地全文:下载
  • 作者:Van Quan Nguyen ; Tien Nguyen Anh ; Hyung-Jeong Yang
  • 期刊名称:International Journal of Distributed Sensor Networks
  • 印刷版ISSN:1550-1329
  • 电子版ISSN:1550-1477
  • 出版年度:2019
  • 卷号:15
  • 期号:6
  • 页码:1
  • DOI:10.1177/1550147719856492
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We proposed an approach for temporal event detection using deep learning and multi-embedding on a set of text data from social media. First, a convolutional neural network augmented with multiple word-embedding architectures is used as a text classifier for the pre-processing of the input textual data. Second, an event detection model using a recurrent neural network is employed to learn time series data features by extracting temporal information. Recently, convolutional neural networks have been used in natural language processing problems and have obtained excellent results as performing on available embedding vector. In this article, word-embedding features at the embedding layer are combined and fed to convolutional neural network. The proposed method shows no size limitation, supplementation of more embeddings than standard multichannel based approaches, and obtained similar performance (accuracy score) on some benchmark data sets, especially in an imbalanced data set. For event detection, a long short-term memory network is used as a predictor that learns higher level temporal features so as to predict future values. An error distribution estimation model is built to calculate the anomaly score of observation. Events are detected using a window-based method on the anomaly scores.
  • 关键词:Social data; neural network; multiple word embedding; event detection; long short-term memory; real-time
  • 其他关键词:Social data ; neural network ; multiple word embedding ; event detection ; long short-term memory ; real-time
国家哲学社会科学文献中心版权所有