期刊名称:International Journal of Distributed Sensor Networks
印刷版ISSN:1550-1329
电子版ISSN:1550-1477
出版年度:2018
卷号:14
期号:6
页码:1
DOI:10.1177/1550147718779680
出版社:Hindawi Publishing Corporation
摘要:Indoor localization systems using received signal strength indicator are very popular for their low power and low complexity, but some drawbacks limit their accuracy, especially in harsh environments, such as multipath and fluctuation. Most existing approaches solve the problem by “fingerprinting.” However, “fingerprinting” based algorithms are unsuitable for changeable environments like construction, since they all demand prior knowledge of the environment. This article studies a novel localization system to achieve an acceptable accuracy position using received signal strength indicator for harsh environments like construction. Based on analysis of the targets’ behavior pattern, we first use curve fitting to filter the distance derived from received signal strength indicator. And then, we propose a distance ratio location algorithm to estimate the targets’ positions. Furthermore, Kalman filter is considered to smooth the position results. This method has been applied in the “Monitoring and Control System for Underground Tunneling Based on Cyber Physical System” Project in Wuhan for tracking workers and vehicles. Practice results show that our system has an acceptable accuracy.
关键词:Indoor localization; Internet of things; curve fitting; Kalman filter; trilateration