首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Attention-mechanism-based tracking method for intelligent Internet of vehicles
  • 本地全文:下载
  • 作者:Xu Kang ; Bin Song ; Jie Guo
  • 期刊名称:International Journal of Distributed Sensor Networks
  • 印刷版ISSN:1550-1329
  • 电子版ISSN:1550-1477
  • 出版年度:2018
  • 卷号:14
  • 期号:10
  • 页码:1
  • DOI:10.1177/1550147718805946
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Vehicle tracking task plays an important role on the Internet of vehicles and intelligent transportation system. Beyond the traditional Global Positioning System sensor, the image sensor can capture different kinds of vehicles, analyze their driving situation, and can interact with them. Aiming at the problem that the traditional convolutional neural network is vulnerable to background interference, this article proposes vehicle tracking method based on human attention mechanism for self-selection of deep features with an inter-channel fully connected layer. It mainly includes the following contents: (1) a fully convolutional neural network fused attention mechanism with the selection of the deep features for convolution; (2) a separation method for template and semantic background region to separate target vehicles from the background in the initial frame adaptively; (3) a two-stage method for model training using our traffic dataset. The experimental results show that the proposed method improves the tracking accuracy without an increase in tracking time. Meanwhile, it strengthens the robustness of algorithm under the condition of the complex background region. The success rate of the proposed method in overall traffic datasets is higher than Siamese network by about 10%, and the overall precision is higher than Siamese network by 8%.
  • 关键词:Vehicle tracking; bilinear network; attention mechanism; semantics; response
国家哲学社会科学文献中心版权所有