摘要:Nowadays, the importance of educational data mining and learning analytics in higher education institutions is being recognised. The analysis of university careers and of student dropout prediction is one of the most studied topics in the area of learning analytics. From the perspective of estimating the likelihood of a student dropping out, we propose an innovative statistical method that is a generalisation of mixed-effects trees for a response variable in the exponential family: generalised mixed-effects trees (GMET). We performed a simulation study in order to validate the performance of our proposed method and to compare GMET to classical models. In the case study, we applied GMET to model undergraduate student dropout in different courses at Politecnico di Milano. The model was able to identify discriminating student characteristics and estimate the effect of each degree-based course on the probability of student dropout.
关键词:mixed-effects models; regression and classification trees; student dropout; academic data; learning analytics mixed-effects models ; regression and classification trees ; student dropout ; academic data ; learning analytics