首页    期刊浏览 2025年06月26日 星期四
登录注册

文章基本信息

  • 标题:Nonlinear Model Predictive Horizon for Optimal Trajectory Generation
  • 本地全文:下载
  • 作者:Younes Al Younes ; Martin Barczyk
  • 期刊名称:Robotics
  • 电子版ISSN:2218-6581
  • 出版年度:2021
  • 卷号:10
  • 期号:3
  • 页码:90
  • DOI:10.3390/robotics10030090
  • 出版社:MDPI Publishing
  • 摘要:This paper presents a trajectory generation method for a nonlinear system under closed-loop control (here a quadrotor drone) motivated by the Nonlinear Model Predictive Control (NMPC) method. Unlike NMPC, the proposed method employs a closed-loop system dynamics model within the optimization problem to efficiently generate reference trajectories in real time. We call this approach the Nonlinear Model Predictive Horizon (NMPH). The closed-loop model used within NMPH employs a feedback linearization control law design to decrease the nonconvexity of the optimization problem and thus achieve faster convergence. For robust trajectory planning in a dynamically changing environment, static and dynamic obstacle constraints are supported within the NMPH algorithm. Our algorithm is applied to a quadrotor system to generate optimal reference trajectories in 3D, and several simulation scenarios are provided to validate the features and evaluate the performance of the proposed methodology.
  • 关键词:trajectory generation; nonlinear model predictive approach; feedback linearization; dynamic obstacle avoidance; quadrotor vehicle trajectory generation ; nonlinear model predictive approach ; feedback linearization ; dynamic obstacle avoidance ; quadrotor vehicle
国家哲学社会科学文献中心版权所有