摘要:Atmospheric black carbon (BC) is the most important aerosol contributor to global warming. However, there is a lack of understanding about the climate impact of BC aerosols because of systematic discrepancies between model and observation estimates of light absorption enhancements (Eabs) in atmospheric processes after emissions, and such discrepancies are transferred directly into large uncertainties of aerosol radiative forcing assessments. In this study, we quantify Eabs of atmospheric BC aerosols with diverse particle morphology distributions using a multi-dimensional aerosol model. We show that current widely used Mie method may overestimate BC Eabs by ∼50% because variations in particle morphology are not considered. Although absorption calculation can be improved by including complex particle morphology and heterogeneity in composition, we find that neglect of the diverse particle morphology distributions in modeling may lead to 15% ∼ 30% relative deviations on Eabs estimations of BC aerosol ensembles. The results thus imply that particle morphology distribution should be included in models to accurately represent the radiative effects of BC aerosols.
关键词:anthropogenic aerosol; atmospheric process; black carbon; climate model; global warming; light absorption