首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Soil indigenous nutrients increase the resilience of maize yield to climatic warming in China
  • 本地全文:下载
  • 作者:Xi Deng ; Yao Huang ; Zhangcai Qin
  • 期刊名称:Environmental Research Letters
  • 印刷版ISSN:1748-9326
  • 电子版ISSN:1748-9326
  • 出版年度:2020
  • 卷号:15
  • 期号:9
  • 页码:94047
  • DOI:10.1088/1748-9326/aba4c8
  • 出版社:IOP Publishing Ltd
  • 摘要:Climate warming leads to crop yield loss. Although investigations have shown the region-specific effect of climate warming on maize yield in China, the determinants of this region-specific effect are poorly known. Using county-level data from 1980 to 2010 for China, we investigated the dependence of yield change under climate warming on soil indigenous nutrients. Analysis of the data indicated an average decrease of 2.6% in maize yield for 1 °C warming. Warming-related yield loss occurred mostly in western China, the North China Plain, and the southwest region of Northeast China. By contrast, climate warming did not decline maize yield in the northern region of Northeast China, south, and southwest China. Summer maize is more sensitive to warming than spring maize. A 1 °C warming resulted in an average loss of 3.3% for summer maize and 1.8% for spring maize. The region-specific change in yield can be well quantified by a combination of soil indigenous total nitrogen (STN), available phosphorus (SAP), and available potassium (SAK). Under climate warming, maize yields in regions with high STN generally increased, while the risk of yield reduction appeared in regions with high SAK. Areas that were vulnerable (defined as a yield loss higher than 1% for a 1 °C increase) to climate warming accounted for 62%, while areas that showed resilience (defined as a yield increase higher than 1% for a 1 °C increase) to climate warming accounted for 27% of the planting area. An increase in nitrogen fertilizer application is expected to reduce the risk of yield reduction in regions with low STN. Our findings highlight soil resilience to climate warming and underline the practice of fertilizer management to mitigate yield loss due to climate warming.
  • 关键词:climate change; maize yield; resilience; soil indigenous nutrients; temperature sensitivity
国家哲学社会科学文献中心版权所有