首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Word prediction in computational historical linguistics
  • 本地全文:下载
  • 作者:Peter Dekker ; Willem Zuidema
  • 期刊名称:Journal of Language Modelling
  • 印刷版ISSN:2299-856X
  • 电子版ISSN:2299-8470
  • 出版年度:2020
  • 卷号:8
  • 期号:2
  • 页码:295-336
  • DOI:10.15398/jlm.v8i2.268
  • 语种:English
  • 出版社:Polish Academy of Sciences
  • 摘要:In this paper, we investigate how the prediction paradigm from machine learning and Natural Language Processing (NLP) can be put to use in computational historical linguistics. We propose word prediction as an intermediate task, where the forms of unseen words in some target language are predicted from the forms of the corresponding words in a source language. Word prediction allows us to develop algorithms for phylogenetic tree reconstruction, sound correspondence identification and cognate detection, in ways close to attested methods for linguistic reconstruction. We will discuss different factors, such as data representation and the choice of machine learning model, that have to be taken into account when applying prediction methods in historical linguistics. We present our own implementations and evaluate them on different tasks in historical linguistics.
  • 关键词:computationalhistoricallinguistics;machine learning;deep learning
国家哲学社会科学文献中心版权所有