首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:Determining the Number of Neurons in Artificial Neural Networks for Approximation, Trained with Algorithms Using the Jacobi Matrix
  • 本地全文:下载
  • 作者:Kostadin Yotov ; Emil Hadzhikolev ; Stanka Hadzhikoleva
  • 期刊名称:TEM Journal
  • 印刷版ISSN:2217-8309
  • 电子版ISSN:2217-8333
  • 出版年度:2020
  • 卷号:9
  • 期号:4
  • 页码:1320-1329
  • DOI:10.18421/TEM94-02
  • 语种:English
  • 出版社:UIKTEN
  • 摘要:How can we determine the optimal number of neurons when constructing an artificial neural network? This is one of the most frequently asked questions when working with this type of artificial intelligence. Experience has brought the understanding that it takes an individual approach for each task to specify the number of neurons. Our method is based on the requirement of algorithms looking for a minimum of functions of type S(z)= ∑mi=1[φ(z)]2 that satisfy the inequality p≤m, where p is the dimensionality of the argument z, and m is the number of functions. Formulas for an upper limit of the required neurons are proposed for networks with one hidden layer and for networks with r hidden layers with an equal number of neurons.
  • 关键词:neural networks for approximation;number of neurons;neural network design
国家哲学社会科学文献中心版权所有