首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Estimation of Gourami Supplies Using Gradient Boosting Decision Tree Method of XGBoost
  • 本地全文:下载
  • 作者:I Made Sukarsa ; Ngakan Nyoman Pandika Pinata ; Ni Kadek Dwi Rusjayanthi
  • 期刊名称:TEM Journal
  • 印刷版ISSN:2217-8309
  • 电子版ISSN:2217-8333
  • 出版年度:2021
  • 卷号:10
  • 期号:1
  • 页码:144-151
  • DOI:10.18421/TEM101-17
  • 语种:English
  • 出版社:UIKTEN
  • 摘要:The need for food supplies are very crucial in a food business, therefore it is necessary to estimate the right supplies to maximize profit. One of the methods to determine these is by looking for patterns and forecasting transaction data. The purpose of this research is to estimate the gourami supplies using transaction data to forecast using the gradient boosting decision tree method from XGBoost. The transaction data used comes from Restaurant X with a time period from 2016 to 2019. A measurement error rate of the model is achieved by using MAE (Mean Absolute Error) and MAPE (Mean Absolute Percentage Error). This study tried five XGBoost models with different features such as lag, rolling window, mean encoding, and mix. The results of this study indicate that the mixed feature model produces an accuracy of 97.54% with an MAE of 0.63 and a MAPE of 2.64%.
  • 关键词:Forecasting;Time Series;GBDT;XGBoost;Gourami Inventory
国家哲学社会科学文献中心版权所有