摘要:The bioelectric potentials associated with muscle activity constitute the electromyogram (EMG). These EMG signals are low-frequency and lower-magnitude signals. In this paper, it is presented that Jordan/Elman neural network can be effectively used for EMG signal noise removal, which is a typical nonlinear multivariable regression problem, as compared with other types of neural networks. Different neural network (NN) models with varying parameters were considered for the design of adaptive neural-network-based filter which is a typical SISO system. The performance parameters, that is, MSE, correlation coefficient, N/P, and t, are found to be in the expected range of values.