首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Tree-Based Methods for Discovery of Association between Flow Cytometry Data and Clinical Endpoints
  • 本地全文:下载
  • 作者:M. Eliot ; L. Azzoni ; C. Firnhaber
  • 期刊名称:Advances in Bioinformatics
  • 印刷版ISSN:1687-8027
  • 电子版ISSN:1687-8035
  • 出版年度:2009
  • 卷号:2009
  • DOI:10.1155/2009/235320
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We demonstrate the application and comparative interpretations of three tree-based algorithms for the analysis of data arising from flow cytometry: classification and regression trees (CARTs), random forests (RFs), and logic regression (LR). Specifically, we consider the question of what best predicts CD4 T-cell recovery in HIV-1 infected persons starting antiretroviral therapy with CD4 count between 200 and 350 cell/𝜇L. A comparison to a more standard contingency table analysis is provided. While contingency table analysis and RFs provide information on the importance of each potential predictor variable, CART and LR offer additional insight into the combinations of variables that together are predictive of the outcome. In all cases considered, baseline CD3-DR-CD56
国家哲学社会科学文献中心版权所有