Log-linear modeling is a popular statistical tool for analysing a contingency table. This presentation focuses on an alternative approach to modeling ordinal categorical data. The technique, based on orthogonal polynomials, provides a much simpler method of model fitting than the conventional approach of maximum likelihood estimation, as it does not require iterative calculations nor the fitting and re-fitting to search for the best model. Another advantage is that quadratic and higher order effects can readily be included, in contrast to conventional log-linear models which incorporate linear terms only.
The focus of the discussion is the application of the new parameter estimation technique to multi-way contingency tables with at least one ordered variable. This will also be done by considering singly and doubly ordered two-way contingency tables. It will be shown by example that the resulting parameter estimates are numerically similar to corresponding maximum likelihood estimates for ordinal log-linear models.