We offer conditions on semipositone function f ( t , u 0 , u 1 , … , u n - 2 ) such that the boundary value problem, u Δ n ( t ) + f ( t , u ( σ n - 1 ( t ) ) , u Δ ( σ n - 2 ( t ) ) , … , u Δ n - 2 ( σ ( t ) ) ) = 0 , t ∈ ( 0,1 ) ∩ 𝕋 , n ≥ 2 , u Δ i ( 0 ) = 0 , i = 0,1 , … , n - 3 , α u Δ n - 2 ( 0 ) - β u Δ n - 1 ( 0 ) = 0 , γ u Δ n - 2 ( σ ( 1 ) ) + δ u Δ n - 1 ( σ ( 1 ) ) = 0 , has at least one positive solution, where 𝕋 is a time scale and f ( t , u 0 , u 1 , … , u n - 2 ) ∈ C ( [ 0,1 ] × ℝ [ 0 , ∞ ) n - 1 , ℝ ( - ∞ , ∞ ) ) is continuous with f ( t , u 0 , u 1 , … , u n - 2 ) ≥ - M for some positive constant M .