For nonnegative real numbers α , β , γ , A , B , and C such that B + C > 0 and α + β + γ > 0 , the difference equation x n + 1 = ( α + β x n + γ x n − 1 ) / ( A + B x n + C x n − 1 ) , n = 0 , 1 , 2 , … has a unique positive equilibrium. A proof is given here for the following statements: (1) For every choice of positive parameters α , β , γ , A , B , and C , all solutions to the difference equation x n + 1 = ( α + β x n + γ x n − 1 ) / ( A + B x n + C x n − 1 ) , n = 0 , 1 , 2 , … , x − 1 , x 0 ∈ [ 0 , ∞ ) converge to the positive equilibrium or to a prime period-two solution . (2) For every choice of positive parameters α , β , γ , B , and C , all solutions to the difference equation x n + 1 = ( α + β x n + γ x n − 1 ) / ( B x n + C x n − 1 ) , n = 0 , 1 , 2 , … , x − 1 , x 0 ∈ ( 0 , ∞ ) converge to the positive equilibrium or to a prime period-two solution .