We study the existence of solutions of nonlinear discrete boundary value problems Δ 2 u ( t − 1 ) + μ 1 u ( t ) + g ( t , u ( t ) ) = h ( t ) , t ∈ T , u ( a ) = u ( b + 2 ) = 0 , where T : = { a + 1 , … , b + 1 } , h : T → ℝ , μ 1 is the first eigenvalue of the linear problem Δ 2 u ( t − 1 ) + μ u ( t ) = 0 , t ∈ T , u ( a ) = u ( b + 2 ) = 0 , g : T × ℝ → ℝ satisfies some “asymptotic nonuniform” resonance conditions, and g ( t , u ) u ≥ 0 for u ∈ ℝ .