首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:Inferring Functional Brain States Using Temporal Evolution of Regularized Classifiers
  • 本地全文:下载
  • 作者:Andrey Zhdanov ; Talma Hendler ; Leslie Ungerleider
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2007
  • 卷号:2007
  • DOI:10.1155/2007/52609
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We present a framework for inferring functional brain state from electrophysiological (MEG or EEG) brain signals. Our approach is adapted to the needs of functional brain imaging rather than EEG-based brain-computer interface (BCI). This choice leads to a different set of requirements, in particular to the demand for more robust inference methods and more sophisticated model validation techniques. We approach the problem from a machine learning perspective, by constructing a classifier from a set of labeled signal examples. We propose a framework that focuses on temporal evolution of regularized classifiers, with cross-validation for optimal regularization parameter at each time frame. We demonstrate the inference obtained by this method on MEG data recorded from 10 subjects in a simple visual classification experiment, and provide comparison to the classical nonregularized approach.
国家哲学社会科学文献中心版权所有