首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Classification of Polarimetric SAR Image Based on Support Vector Machine Using Multiple-Component Scattering Model and Texture Features
  • 本地全文:下载
  • 作者:Lamei Zhang ; Bin Zou ; Junping Zhang
  • 期刊名称:EURASIP Journal on Advances in Signal Processing
  • 印刷版ISSN:1687-6172
  • 电子版ISSN:1687-6180
  • 出版年度:2010
  • 卷号:2010
  • DOI:10.1155/2010/960831
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    The classification of polarimetric SAR image based on Multiple-Component Scattering Model (MCSM) and Support Vector Machine (SVM) is presented in this paper. MCSM is a potential decomposition method for a general condition. SVM is a popular tool for machine learning tasks involving classification, recognition, or detection. The scattering powers of single-bounce, double-bounce, volume, helix, and wire scattering components are extracted from fully polarimetric SAR images. Combining with the scattering powers of MCSM and the selected texture features from Gray-level cooccurrence matrix (GCM), SVM is used for the classification of polarimetric SAR image. We generate a validity test for the proposed method using Danish EMISAR L-band fully polarimetric data of Foulum Area (DK), Denmark. The preliminary result indicates that this method can classify most of the areas correctly.

国家哲学社会科学文献中心版权所有