首页    期刊浏览 2025年02月26日 星期三
登录注册

文章基本信息

  • 标题:Boosted and Linked Mixtures of HMMs for Brain-Machine Interfaces
  • 本地全文:下载
  • 作者:Shalom Darmanjian ; Jose C. Principe
  • 期刊名称:EURASIP Journal on Advances in Signal Processing
  • 印刷版ISSN:1687-6172
  • 电子版ISSN:1687-6180
  • 出版年度:2008
  • 卷号:2008
  • DOI:10.1155/2008/216453
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    We propose two algorithms that decompose the joint likelihood of observing multidimensional neural input data into marginal likelihoods. The first algorithm, boosted mixtures of hidden Markov chains (BMs-HMM), applies techniques from boosting to create implicit hierarchic dependencies between these marginal subspaces. The second algorithm, linked mixtures of hidden Markov chains (LMs-HMM), uses a graphical modeling framework to explicitly create the hierarchic dependencies between these marginal subspaces. Our results show that these algorithms are very simple to train and computationally efficient, while also reducing the input dimensionality for brain-machine interfaces (BMIs).

国家哲学社会科学文献中心版权所有