首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Adaptive Kernel Canonical Correlation Analysis Algorithms for Nonparametric Identification of Wiener and Hammerstein Systems
  • 本地全文:下载
  • 作者:Steven Van Vaerenbergh ; Javier Vía ; Ignacio Santamaría
  • 期刊名称:EURASIP Journal on Advances in Signal Processing
  • 印刷版ISSN:1687-6172
  • 电子版ISSN:1687-6180
  • 出版年度:2008
  • 卷号:2008
  • DOI:10.1155/2008/875351
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    This paper treats the identification of nonlinear systems that consist of a cascade of a linear channel and a nonlinearity, such as the well-known Wiener and Hammerstein systems. In particular, we follow a supervised identification approach that simultaneously identifies both parts of the nonlinear system. Given the correct restrictions on the identification problem, we show how kernel canonical correlation analysis (KCCA) emerges as the logical solution to this problem. We then extend the proposed identification algorithm to an adaptive version allowing to deal with time-varying systems. In order to avoid overfitting problems, we discuss and compare three possible regularization techniques for both the batch and the adaptive versions of the proposed algorithm. Simulations are included to demonstrate the effectiveness of the presented algorithm.

国家哲学社会科学文献中心版权所有