首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Object Tracking in Crowded Video Scenes Based on the Undecimated Wavelet Features and Texture Analysis
  • 本地全文:下载
  • 作者:M. Khansari ; H. R. Rabiee ; M. Asadi
  • 期刊名称:EURASIP Journal on Advances in Signal Processing
  • 印刷版ISSN:1687-6172
  • 电子版ISSN:1687-6180
  • 出版年度:2008
  • 卷号:2008
  • DOI:10.1155/2008/243534
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    We propose a new algorithm for object tracking in crowded video scenes by exploiting the properties of undecimated wavelet packet transform (UWPT) and interframe texture analysis. The algorithm is initialized by the user through specifying a region around the object of interest at the reference frame. Then, coefficients of the UWPT of the region are used to construct a feature vector (FV) for every pixel in that region. Optimal search for the best match is then performed by using the generated FVs inside an adaptive search window. Adaptation of the search window is achieved by interframe texture analysis to find the direction and speed of the object motion. This temporal texture analysis also assists in tracking of the object under partial or short-term full occlusion. Moreover, the tracking algorithm is robust to Gaussian and quantization noise processes. Experimental results show that the proposed algorithm has good performance for object tracking in crowded scenes on stairs, in airports, or at train stations in the presence of object translation, rotation, small scaling, and occlusion.

国家哲学社会科学文献中心版权所有