首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:On Sequential Track Extraction within the PMHT Framework
  • 本地全文:下载
  • 作者:Monika Wieneke ; Wolfgang Koch
  • 期刊名称:EURASIP Journal on Advances in Signal Processing
  • 印刷版ISSN:1687-6172
  • 电子版ISSN:1687-6180
  • 出版年度:2008
  • 卷号:2008
  • DOI:10.1155/2008/276914
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    Tracking multiple targets in a cluttered environment is a challenging task. Probabilistic multiple hypothesis tracking (PMHT) is an efficient approach for dealing with it. Essentially PMHT is based on expectation-maximization for handling with association conflicts. Linearity in the number of targets and measurements is the main motivation for a further development and extension of this methodology. In particular, the problem of track extraction and deletion is apparently not yet satisfactorily solved within this framework. A sequential likelihood-ratio (LR) test for track extraction has been developed and integrated into the framework of traditional Bayesian multiple hypothesis tracking by Günter van Keuk in 1998. As PMHT is a multiscan approach as well, it also has the potential for track extraction. In this paper, an analogous integration of a sequential LR test into the PMHT framework is proposed. We present an LR formula for track extraction and deletion using the PMHT update formulae. The LR is thus a by-product of the PMHT iteration process, as PMHT provides all required ingredients for a sequential LR calculation. Therefore, the resulting update formula for the sequential LR test affords the development of track-before-detect algorithms for PMHT. The approach is illustrated by a simple example.

国家哲学社会科学文献中心版权所有