首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:On the Use of Complementary Spectral Features for Speaker Recognition
  • 本地全文:下载
  • 作者:Danoush Hosseinzadeh ; Sridhar Krishnan
  • 期刊名称:EURASIP Journal on Advances in Signal Processing
  • 印刷版ISSN:1687-6172
  • 电子版ISSN:1687-6180
  • 出版年度:2008
  • 卷号:2008
  • DOI:10.1155/2008/258184
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    The most popular features for speaker recognition are Mel frequency cepstral coefficients (MFCCs) and linear prediction cepstral coefficients (LPCCs). These features are used extensively because they characterize the vocal tract configuration which is known to be highly speaker-dependent. In this work, several features are introduced that can characterize the vocal system in order to complement the traditional features and produce better speaker recognition models. The spectral centroid (SC), spectral bandwidth (SBW), spectral band energy (SBE), spectral crest factor (SCF), spectral flatness measure (SFM), Shannon entropy (SE), and Renyi entropy (RE) were utilized for this purpose. This work demonstrates that these features are robust in noisy conditions by simulating some common distortions that are found in the speakers' environment and a typical telephone channel. Babble noise, additive white Gaussian noise (AWGN), and a bandpass channel with 1 dB of ripple were used to simulate these noisy conditions. The results show significant improvements in classification performance for all noise conditions when these features were used to complement the MFCC and Δ MFCC features. In particular, the SC and SCF improved performance in almost all noise conditions within the examined SNR range (10–40 dB). For example, in cases where there was only one source of distortion, classification improvements of up to 8% and 10% were achieved under babble noise and AWGN, respectively, using the SCF feature.

国家哲学社会科学文献中心版权所有