首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Robust Abandoned Object Detection Using Dual Foregrounds
  • 本地全文:下载
  • 作者:Fatih Porikli ; Yuri Ivanov ; Tetsuji Haga
  • 期刊名称:EURASIP Journal on Advances in Signal Processing
  • 印刷版ISSN:1687-6172
  • 电子版ISSN:1687-6180
  • 出版年度:2008
  • 卷号:2008
  • DOI:10.1155/2008/197875
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    As an alternative to the tracking-based approaches that heavily depend on accurate detection of moving objects, which often fail for crowded scenarios, we present a pixelwise method that employs dual foregrounds to extract temporally static image regions. Depending on the application, these regions indicate objects that do not constitute the original background but were brought into the scene at a subsequent time, such as abandoned and removed items, illegally parked vehicles. We construct separate long- and short-term backgrounds that are implemented as pixelwise multivariate Gaussian models. Background parameters are adapted online using a Bayesian update mechanism imposed at different learning rates. By comparing each frame with these models, we estimate two foregrounds. We infer an evidence score at each pixel by applying a set of hypotheses on the foreground responses, and then aggregate the evidence in time to provide temporal consistency. Unlike optical flow-based approaches that smear boundaries, our method can accurately segment out objects even if they are fully occluded. It does not require on-site training to compensate for particular imaging conditions. While having a low-computational load, it readily lends itself to parallelization if further speed improvement is necessary.

国家哲学社会科学文献中心版权所有