首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:On a Class of Parametric Transforms and Its Application to Image Compression
  • 本地全文:下载
  • 作者:Susanna Minasyan ; Jaakko Astola ; David Guevorkian
  • 期刊名称:EURASIP Journal on Advances in Signal Processing
  • 印刷版ISSN:1687-6172
  • 电子版ISSN:1687-6180
  • 出版年度:2007
  • 卷号:2007
  • DOI:10.1155/2007/58416
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    A class of parametric transforms that are based on unified representation of transform matrices in the form of sparse matrix products is described. Different families of transforms are defined within the introduced class. All transforms of one family can be computed with fast algorithms similar in structure to each other. In particular, the family of Haar-like transforms consists of discrete orthogonal transforms of arbitrary order such that they all may be computed with a fast algorithm that is in structure similar to classical fast Haar transform. A method for parameter selection is proposed that allows synthesizing specific transforms with matrices containing predefined row(s). The potential of the proposed class of Haar-like parametric transforms to improve the performance of fixed block transforms in image compression is investigated. With this purpose, two image compression schemes are proposed where a number of Haar-like transforms are synthesized each adapted to a certain set of blocks within an image.The nature of the proposed schemes is such that their performance (in terms of PSNR versus compression ratio) cannot be worse than a scheme based on classical discrete cosine transform (DCT). Simulations show that a significant performance improvement can be achieved for certain types of images such as medical X-ray images and compound images.

国家哲学社会科学文献中心版权所有