首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Robust In-Car Speech Recognition Based on Nonlinear Multiple Regressions
  • 本地全文:下载
  • 作者:Weifeng Li ; Kazuya Takeda ; Fumitada Itakura
  • 期刊名称:EURASIP Journal on Advances in Signal Processing
  • 印刷版ISSN:1687-6172
  • 电子版ISSN:1687-6180
  • 出版年度:2007
  • 卷号:2007
  • DOI:10.1155/2007/16921
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    We address issues for improving handsfree speech recognition performance in different car environments using a single distant microphone. In this paper, we propose a nonlinear multiple-regression-based enhancement method for in-car speech recognition. In order to develop a data-driven in-car recognition system, we develop an effective algorithm for adapting the regression parameters to different driving conditions. We also devise the model compensation scheme by synthesizing the training data using the optimal regression parameters and by selecting the optimal HMM for the test speech. Based on isolated word recognition experiments conducted in 15 real car environments, the proposed adaptive regression approach shows an advantage in average relative word error rate (WER) reductions of 52.5 % and 14.8 % , compared to original noisy speech and ETSI advanced front end, respectively.

国家哲学社会科学文献中心版权所有