An algorithm based on a space fast-time adaptive processor is presented for nulling the mainlobe jammer when the jammer and the target of interest share the same bearing. The computational load involved in the conventional processor, which blindly looks for the terrain-scattered interference (TSI), is required to stack a large number of consecutive range cell returns to form the space fast-time data snapshot making it almost impossible to implement in real time. This issue is resolved via the introduction of a preprocessor (a TSI finder which detects the presence of the minute levels of multipath components of the mainlobe jammer and associated time delays) which directs the STAP processor to select only two desired range returns in order to form the space fast-time data snapshot. The end result is a computationally extremely fast processor. Also a new space fast-time adaptive processor based on the super-resolution approach (eigenvector-based) is presented.