首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Clustering Time Series Gene Expression Data Based on Sum-of-Exponentials Fitting
  • 本地全文:下载
  • 作者:Ciprian Doru Giurcăneanu ; Ioan Tăbuş ; Jaakko Astola
  • 期刊名称:EURASIP Journal on Advances in Signal Processing
  • 印刷版ISSN:1687-6172
  • 电子版ISSN:1687-6180
  • 出版年度:2005
  • 卷号:2005
  • 期号:8
  • 页码:1159-1173
  • DOI:10.1155/ASP.2005.1159
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    This paper presents a method based on fitting a sum-of-exponentials model to the nonuniformly sampled data, for clustering the time series of gene expression data. The structure of the model is estimated by using the minimum description length (MDL) principle for nonlinear regression, in a new form, incorporating a normalized maximum-likelihood (NML) model for a subset of the parameters. The performance of the structure estimation method is studied using simulated data, and the superiority of the new selection criterion over earlier criteria is demonstrated. The accuracy of the nonlinear estimates of the model parameters is analyzed with respect to the Cramér-Rao lower bounds. Clustering examples of gene expression data sets from a developmental biology application are presented, revealing gene grouping into clusters according to functional classes.

国家哲学社会科学文献中心版权所有