首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Surface Approximation Using the 2D FFENN Architecture
  • 本地全文:下载
  • 作者:S. Panagopoulos ; J. J. Soraghan
  • 期刊名称:EURASIP Journal on Advances in Signal Processing
  • 印刷版ISSN:1687-6172
  • 电子版ISSN:1687-6180
  • 出版年度:2004
  • 卷号:2004
  • 期号:17
  • 页码:2696-2704
  • DOI:10.1155/S111086570440612X
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    A new two-dimensional feed-forward functionally expanded neural network (2D FFENN) used to produce surface models in two dimensions is presented. New nonlinear multilevel surface basis functions are proposed for the network's functional expansion. A network optimization technique based on an iterative function selection strategy is also described. Comparative simulation results for surface mappings generated by the 2D FFENN, multilevel 2D FFENN, multilayered perceptron (MLP), and radial basis function (RBF) architectures are presented.

国家哲学社会科学文献中心版权所有