首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Time-Varying Noise Estimation for Speech Enhancement and Recognition Using Sequential Monte Carlo Method
  • 本地全文:下载
  • 作者:Kaisheng Yao ; Te-Won Lee
  • 期刊名称:EURASIP Journal on Advances in Signal Processing
  • 印刷版ISSN:1687-6172
  • 电子版ISSN:1687-6180
  • 出版年度:2004
  • 卷号:2004
  • 期号:15
  • 页码:2366-2384
  • DOI:10.1155/S1110865704405022
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    We present a method for sequentially estimating time-varying noise parameters. Noise parameters are sequences of time-varying mean vectors representing the noise power in the log-spectral domain. The proposed sequential Monte Carlo method generates a set of particles in compliance with the prior distribution given by clean speech models. The noise parameters in this model evolve according to random walk functions and the model uses extended Kalman filters to update the weight of each particle as a function of observed noisy speech signals, speech model parameters, and the evolved noise parameters in each particle. Finally, the updated noise parameter is obtained by means of minimum mean square error (MMSE) estimation on these particles. For efficient computations, the residual resampling and Metropolis-Hastings smoothing are used. The proposed sequential estimation method is applied to noisy speech recognition and speech enhancement under strongly time-varying noise conditions. In both scenarios, this method outperforms some alternative methods.

国家哲学社会科学文献中心版权所有