首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:An Improved Way to Make Large-Scale SVR Learning Practical
  • 本地全文:下载
  • 作者:Quan Yong ; Yang Jie ; Yao Lixiu
  • 期刊名称:EURASIP Journal on Advances in Signal Processing
  • 印刷版ISSN:1687-6172
  • 电子版ISSN:1687-6180
  • 出版年度:2004
  • 卷号:2004
  • 期号:8
  • 页码:1135-1141
  • DOI:10.1155/S1110865704312096
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    We first put forward a new algorithm of reduced support vector regression (RSVR) and adopt a new approach to make a similar mathematical form as that of support vector classification. Then we describe a fast training algorithm for simplified support vector regression, sequential minimal optimization (SMO) which was used to train SVM before. Experiments prove that this new method converges considerably faster than other methods that require the presence of a substantial amount of the data in memory.

国家哲学社会科学文献中心版权所有