首页    期刊浏览 2025年04月17日 星期四
登录注册

文章基本信息

  • 标题:New Insights into the RLS Algorithm
  • 本地全文:下载
  • 作者:Jacob Benesty ; Tomas Gänsler
  • 期刊名称:EURASIP Journal on Advances in Signal Processing
  • 印刷版ISSN:1687-6172
  • 电子版ISSN:1687-6180
  • 出版年度:2004
  • 卷号:2004
  • 期号:3
  • 页码:331-339
  • DOI:10.1155/S1110865704310188
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    The recursive least squares (RLS) algorithm is one of the most popular adaptive algorithms that can be found in the literature, due to the fact that it is easily and exactly derived from the normal equations. In this paper, we give another interpretation of the RLS algorithm and show the importance of linear interpolation error energies in the RLS structure. We also give a very efficient way to recursively estimate the condition number of the input signal covariance matrix thanks to fast versions of the RLS algorithm. Finally, we quantify the misalignment of the RLS algorithm with respect to the condition number.

国家哲学社会科学文献中心版权所有