We consider the problem of locating and orienting a network of unattended sensor nodes that have been deployed in a scene at unknown locations and orientation angles. This self-calibration problem is solved by placing a number of source signals, also with unknown locations, in the scene. Each source in turn emits a calibration signal, and a subset of sensor nodes in the network measures the time of arrival and direction of arrival (with respect to the sensor node's local orientation coordinates) of the signal emitted from that source. From these measurements we compute the sensor node locations and orientations, along with any unknown source locations and emission times. We develop necessary conditions for solving the self-calibration problem and provide a maximum likelihood solution and corresponding location error estimate. We also compute the Cramér-Rao bound of the sensor node location and orientation estimates, which provides a lower bound on calibration accuracy. Results using both synthetic data and field measurements are presented.