An integral part of any audio-visual speech processing (AVSP) system is the front-end visual system that detects facial-features (e.g., eyes and mouth) pertinent to the task of visual speech processing. The ability of this front-end system to not only locate, but also give a confidence measure that the facial-feature is present in the image, directly affects the ability of any subsequent post-processing task such as speech or speaker recognition. With these issues in mind, this paper presents a framework for a facial-feature detection system suitable for use in an AVSP system, but whose basic framework is useful for any application requiring frontal facial-feature detection. A novel approach for facial-feature detection is presented, based on an appearance paradigm. This approach, based on intraclass unsupervised clustering and discriminant analysis, displays improved detection performance over conventional techniques.