We first develop a reduced-rank minimum mean squared error (MMSE) detector for direct-sequence (DS) code division multiple access (CDMA) by forcing the linear MMSE detector to lie in a signal subspace of a reduced dimension. While a reduced-rank MMSE detector has lower complexity, it cannot outperform the full-rank MMSE detector. We then concentrate on the blind reduced-rank MMSE detector which is obtained from an estimated covariance matrix. Our analysis and simulation results show that when the desired user′s signal is in a low-dimensional subspace, there exists an optimal subspace so that the blind reduced-rank MMSE detector lying in this subspace has the best performance. By properly choosing a subsspace, we guarantee that the optimal blind reduced-rank MMSE detector is obtained. An adaptive blind reduced-rank MMSE detector, based on a subspace tracking algorithm, is developed. The adaptive blind reduced-rank MMSE detector exhibits superior steady-state performance and fast convergence speed.