首页    期刊浏览 2025年05月24日 星期六
登录注册

文章基本信息

  • 标题:Towards an Intelligent Acoustic Front End for Automatic Speech Recognition: Built-in Speaker Normalization
  • 本地全文:下载
  • 作者:Umit H. Yapanel ; John H. L. Hansen
  • 期刊名称:EURASIP Journal on Audio, Speech, and Music Processing
  • 印刷版ISSN:1687-4714
  • 电子版ISSN:1687-4722
  • 出版年度:2008
  • 卷号:2008
  • DOI:10.1155/2008/148967
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    A proven method for achieving effective automatic speech recognition (ASR) due to speaker differences is to perform acoustic feature speaker normalization. More effective speaker normalization methods are needed which require limited computing resources for real-time performance. The most popular speaker normalization technique is vocal-tract length normalization (VTLN), despite the fact that it is computationally expensive. In this study, we propose a novel online VTLN algorithm entitled built-in speaker normalization (BISN), where normalization is performed on-the-fly within a newly proposed PMVDR acoustic front end. The novel algorithm aspect is that in conventional frontend processing with PMVDR and VTLN, two separating warping phases are needed; while in the proposed BISN method only one single speaker dependent warp is used to achieve both the PMVDR perceptual warp and VTLN warp simultaneously. This improved integration unifies the nonlinear warping performed in the front end and reduces simultaneously. This improved integration unifies the nonlinear warping performed in the front end and reduces computational requirements, thereby offering advantages for real-time ASR systems. Evaluations are performed for (i) an in-car extended digit recognition task, where an on-the-fly BISN implementation reduces the relative word error rate (WER) by 24%, and (ii) for a diverse noisy speech task (SPINE 2), where the relative WER improvement was 9%, both relative to the baseline speaker normalization method.

国家哲学社会科学文献中心版权所有