首页    期刊浏览 2024年11月01日 星期五
登录注册

文章基本信息

  • 标题:Strong Convergence of Cesàro Mean Iterations for Nonexpansive Nonself-Mappings in Banach Spaces
  • 本地全文:下载
  • 作者:Rabian Wangkeeree
  • 期刊名称:Fixed Point Theory and Applications
  • 印刷版ISSN:1687-1820
  • 电子版ISSN:1687-1812
  • 出版年度:2007
  • 卷号:2007
  • DOI:10.1155/2007/59262
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    Let E be a real uniformly convex Banach space which admits a weakly sequentially continuous duality mapping from E to E * , C a nonempty closed convex subset of E which is also a sunny nonexpansive retract of E , and T : C → E a non-expansive nonself-mapping with F ( T ) ≠ ∅ . In this paper, we study the strong convergence of two sequences generated by x n + 1 = α n x + ( 1 − α n ) ( 1 / n + 1 ) ∑ j = 0 n ( P T ) j x n and y n + 1 = ( 1 / n + 1 ) ∑ j = 0 n P ( α n y + ( 1 − α n ) ( T P ) j y n ) for all n ≥ 0 , where x , x 0 , y , y 0 ∈ C , { α n } is a real sequence in an interval [ 0 , 1 ] , and P is a sunny non-expansive retraction of E onto C . We prove that { x n } and { y n } converge strongly to Q x and Q y , respectively, as n → ∞ , where Q is a sunny non-expansive retraction of C onto F ( T ) . The results presented in this paper generalize, extend, and improve the corresponding results of Matsushita and Kuroiwa and many others.

国家哲学社会科学文献中心版权所有