首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:The Lefschetz-Hopf theorem and axioms for the Lefschetz number
  • 本地全文:下载
  • 作者:Martin Arkowitz ; Robert F. Brown
  • 期刊名称:Fixed Point Theory and Applications
  • 印刷版ISSN:1687-1820
  • 电子版ISSN:1687-1812
  • 出版年度:2004
  • 卷号:2004
  • 期号:1
  • 页码:1-11
  • DOI:10.1155/S1687182004308120
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    The reduced Lefschetz number, that is, L ( ⋅ ) − 1 where L ( ⋅ ) denotes the Lefschetz number, is proved to be the unique integer-valued function λ on self-maps of compact polyhedra which is constant on homotopy classes such that (1) λ ( f g ) = λ ( g f ) for f : X → Y and g : Y → X ; (2) if ( f 1 , f 2 , f 3 ) is a map of a cofiber sequence into itself, then λ ( f 1 ) = λ ( f 1 ) + λ ( f 3 ) ; (3) λ ( f ) = − ( deg ( p 1 f e 1 ) + ⋯ + deg ( p k f e k ) ) , where f is a self-map of a wedge of k circles, e r is the inclusion of a circle into the r th summand, and p r is the projection onto the r th summand. If f : X → X is a self-map of a polyhedron and I ( f ) is the fixed point index of f on all of X , then we show that I ( ⋅ ) − 1 satisfies the above axioms. This gives a new proof of the normalization theorem: if f : X → X is a self-map of a polyhedron, then I ( f ) equals the Lefschetz number L ( f ) of f . This result is equivalent to the Lefschetz-Hopf theorem: if f : X → X is a self-map of a finite simplicial complex with a finite number of fixed points, each lying in a maximal simplex, then the Lefschetz number of f is the sum of the indices of all the fixed points of f .

国家哲学社会科学文献中心版权所有