首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Segmentation of Striatal Brain Structures from High Resolution PET Images
  • 本地全文:下载
  • 作者:Ricardo J. P. C. Farinha ; Ulla Ruotsalainen ; Jussi Hirvonen
  • 期刊名称:International Journal of Biomedical Imaging
  • 印刷版ISSN:1687-4188
  • 电子版ISSN:1687-4196
  • 出版年度:2009
  • 卷号:2009
  • DOI:10.1155/2009/156234
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We propose and evaluate an automatic segmentation method for extracting striatal brain structures (caudate, putamen, and ventral striatum) from parametric 11C-raclopride positron emission tomography (PET) brain images. We focus on the images acquired using a novel brain dedicated high-resolution (HRRT) PET scanner. The segmentation method first extracts the striatum using a deformable surface model and then divides the striatum into its substructures based on a graph partitioning algorithm. The weighted kernel k-means algorithm is used to partition the graph describing the voxel affinities within the striatum into the desired number of clusters. The method was experimentally validated with synthetic and real image data. The experiments showed that our method was able to automatically extract caudate, ventral striatum, and putamen from the images. Moreover, the putamen could be subdivided into anterior and posterior parts. An automatic method for the extraction of striatal structures from high-resolution PET images allows for inexpensive and reproducible extraction of the quantitative information from these images necessary in brain research and drug development.
国家哲学社会科学文献中心版权所有