首页    期刊浏览 2025年06月21日 星期六
登录注册

文章基本信息

  • 标题:Unsupervised Detection of Suspicious Tissue Using Data Modeling and PCA
  • 本地全文:下载
  • 作者:Ikhlas Abdel-Qader ; Lixin Shen ; Christina Jacobs
  • 期刊名称:International Journal of Biomedical Imaging
  • 印刷版ISSN:1687-4188
  • 电子版ISSN:1687-4196
  • 出版年度:2006
  • 卷号:2006
  • DOI:10.1155/IJBI/2006/57850
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Breast cancer is a major cause of death and morbidity among women all over the world, and it is a fact that early detection is a key in improving outcomes. Therefore development of algorithms that aids radiologists in identifying changes in breast tissue early on is essential. In this work an algorithm that investigates the use of principal components analysis (PCA) is developed to identify suspicious regions on mammograms. The algorithm employs linear structure and curvelinear modeling prior to PCA implementations. Evaluation of the algorithm is based on the percentage of correct classification, false positive (FP) and false negative (FN) in all experimental work using real data. Over 90% accuracy in block classification is achieved using mammograms from MIAS database.
国家哲学社会科学文献中心版权所有