首页    期刊浏览 2026年01月03日 星期六
登录注册

文章基本信息

  • 标题:The <svg style="vertical-align:-0.0pt;width:24.674999px;" id="M1" height="14.7625" version="1.1" viewBox="0 0 24.674999 14.7625" width="24.674999" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(1.25,0,0,-1.25,0,14.7625)"> <g transform="translate(72,-60.19)"> <text transform="matrix(1,0,0,-1,-71.95,60.24)"> <tspan style="font-size: 17.93px; " x="0" y="0">𝑀</tspan> </text> </g> </g> </svg>-Wright Function in Time-Fractional Diffusion Processes: A Tutorial Survey
  • 本地全文:下载
  • 作者:Francesco Mainardi ; Antonio Mura ; Gianni Pagnini
  • 期刊名称:International Journal of Differential Equations
  • 印刷版ISSN:1687-9643
  • 电子版ISSN:1687-9651
  • 出版年度:2010
  • 卷号:2010
  • DOI:10.1155/2010/104505
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In the present review we survey the properties of a transcendental function of the Wright type, nowadays known as 𝑀-Wright function, entering as a probability density in a relevant class of self-similar stochastic processes that we generally refer to as time-fractional diffusion processes. Indeed, the master equations governing these processes generalize the standard diffusion equation by means of time-integral operators interpreted as derivatives of fractional order. When these generalized diffusion processes are properly characterized with stationary increments, the 𝑀-Wright function is shown to play the same key role as the Gaussian density in the standard and fractional Brownian motions. Furthermore, these processes provide stochastic models suitable for describing phenomena of anomalous diffusion of both slow and fast types.
国家哲学社会科学文献中心版权所有