标题:Approximation of signals (functions) belonging to the weighted
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>W</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msub><mml:mo>,</mml:mo><mml:mi>ξ</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math>-class by linear operators
期刊名称:International Journal of Mathematics and Mathematical Sciences
印刷版ISSN:0161-1712
电子版ISSN:1687-0425
出版年度:2006
卷号:2006
DOI:10.1155/IJMMS/2006/53538
出版社:Hindawi Publishing Corporation
摘要:Mittal and Rhoades (1999–2001) and Mittal et al. (2006) have initiated the studies of error estimates En(f)
through trigonometric Fourier approximations (TFA) for the situations in which the summability matrix T
does not have monotone rows. In this paper, we determine the degree of approximation of a function f˜, conjugate to a periodic function f
belonging to the weighted W(Lp,ξ(t))-class (p≥1), where ξ(t) is nonnegative and increasing function of t by matrix operators T (without monotone rows) on a
conjugate series of Fourier series associated with f. Our theorem extends a recent result of Mittal et al. (2005) and a theorem of Lal and Nigam (2001) on general matrix summability. Our theorem also generalizes the results of Mittal, Singh, and Mishra (2005) and Qureshi (1981-1982) for Nörlund (Np)-matrices.