首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:The minimum tree for a given zero-entropy period
  • 本地全文:下载
  • 作者:Esther Barrabés ; David Juher
  • 期刊名称:International Journal of Mathematics and Mathematical Sciences
  • 印刷版ISSN:0161-1712
  • 电子版ISSN:1687-0425
  • 出版年度:2005
  • 卷号:2005
  • 期号:19
  • 页码:3025-3033
  • DOI:10.1155/IJMMS.2005.3025
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    We answer the following question: given any n ∈ ℕ , which is the minimum number of endpoints e n of a tree admitting a zero-entropy map f with a periodic orbit of period n ? We prove that e n = s 1 s 2 … s k − ∑ i = 2 k s i s i + 1 … s k , where n = s 1 s 2 … s k is the decomposition of n into a product of primes such that s i ≤ s i + 1 for 1 ≤ i < k . As a corollary, we get a criterion to decide whether a map f defined on a tree with e endpoints has positive entropy: if f has a periodic orbit of period m with e$"> e m > e , then the topological entropy of f is positive.

国家哲学社会科学文献中心版权所有