首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:On a thin set of integers involving the largest prime factor function
  • 本地全文:下载
  • 作者:Jean-Marie De Koninck ; Nicolas Doyon
  • 期刊名称:International Journal of Mathematics and Mathematical Sciences
  • 印刷版ISSN:0161-1712
  • 电子版ISSN:1687-0425
  • 出版年度:2003
  • 卷号:2003
  • 期号:19
  • 页码:1185-1192
  • DOI:10.1155/S016117120320418X
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    For each integer n ≥ 2 , let P ( n ) denote its largest prime factor. Let S : = { n ≥ 2 : n does not divide P ( n ) ! } and S ( x ) : = # { n ≤ x : n ∈ S } . Erdős (1991) conjectured that S is a set of zero density. This was proved by Kastanas (1994) who established that S ( x ) = O ( x / log x ) . Recently, Akbik (1999) proved that S ( x ) = O ( x   exp { − ( 1 / 4 ) log x } ) . In this paper, we show that S ( x ) = x   exp { − ( 2 + o ( 1 ) ) × log   x   log   log   x } . We also investigate small and large gaps among the elements of S and state some conjectures.

国家哲学社会科学文献中心版权所有