首页    期刊浏览 2025年05月24日 星期六
登录注册

文章基本信息

  • 标题:On the maximum value for Zygmund class on an interval
  • 本地全文:下载
  • 作者:Huang Xinzhong ; Oh Sang Kwon ; Jun Eak Park
  • 期刊名称:International Journal of Mathematics and Mathematical Sciences
  • 印刷版ISSN:0161-1712
  • 电子版ISSN:1687-0425
  • 出版年度:2002
  • 卷号:32
  • 期号:2
  • 页码:65-71
  • DOI:10.1155/S0161171202202306
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    We prove that if f ( z ) is a continuous real-valued function on ℝ with the properties f ( 0 ) = f ( 1 ) = 0 and that ‖ f ‖   z   = inf x , t | f ( x + t ) − 2 f ( x ) + f ( x − t ) / t | is finite for all x , t ∈ ℝ , which is called Zygmund function on ℝ , then max x ∈ [ 0 , 1 ] | f ( x ) | ≤ ( 11 / 32 ) ‖ f ‖ z . As an application, we obtain a better estimate for Skedwed Zygmund bound in Zygmund class.

国家哲学社会科学文献中心版权所有