首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Integral mean estimates for polynomials whose zeros are within a circle
  • 本地全文:下载
  • 作者:K. K. Dewan ; Abdullah Mir ; R. S. Yadav
  • 期刊名称:International Journal of Mathematics and Mathematical Sciences
  • 印刷版ISSN:0161-1712
  • 电子版ISSN:1687-0425
  • 出版年度:2001
  • 卷号:28
  • 期号:4
  • 页码:231-235
  • DOI:10.1155/S016117120100607X
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    Let p ( z ) be a polynomial of degree n having all its zeros in | z | ≤ k ;     k ≤ 1 , then for each 0$"> r > 0 , 1$"> p > 1 , 1$"> q > 1 with p − 1 + q − 1 = 1 , Aziz and Ahemad (1996) recently proved that n { ∫ 0 2 π | p ( e i θ ) | r d θ } 1 / r ≤ { ∫ 0 2 π | 1 + k e i θ | p r d θ } 1 / p r { ∫ 0 2 π | p ′ ( e i θ ) | q r d θ } 1 / q r . In this paper, we extend the above inequality to the class of polynomials p ( z ) = a n z n + ∑ v = μ n a n − v z n − v ; 1 ≤ μ ≤ n having all its zeros in | z | ≤ k ;     k ≤ 1 and obtain a generalization as well as a refinement of the above result.

国家哲学社会科学文献中心版权所有