首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:The product of r−k and ∇δ on ℝm
  • 本地全文:下载
  • 作者:C. K. Li
  • 期刊名称:International Journal of Mathematics and Mathematical Sciences
  • 印刷版ISSN:0161-1712
  • 电子版ISSN:1687-0425
  • 出版年度:2000
  • 卷号:24
  • 期号:6
  • 页码:361-369
  • DOI:10.1155/S0161171200004233
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    In the theory of distributions, there is a general lack of definitions for products and powers of distributions. In physics (Gasiorowicz (1967), page 141), one finds the need to evaluate δ 2 when calculating the transition rates of certain particle interactions and using some products such as ( 1 / x ) ⋅ δ . In 1990, Li and Fisher introduced a “computable” delta sequence in an m -dimensional space to obtain a noncommutative neutrix product of r − k and Δ δ ( Δ denotes the Laplacian) for any positive integer k between 1 and m − 1 inclusive. Cheng and Li (1991) utilized a net δ ϵ ( x ) (similar to the δ n ( x ) ) and the normalization procedure of μ ( x ) x + λ to deduce a commutative neutrix product of r − k and δ for any positive real number k . The object of this paper is to apply Pizetti's formula and the normalization procedure to derive the product of r − k and ∇ δ ( ∇ is the gradient operator) on ℝ m . The nice properties of the δ -sequence are fully shown and used in the proof of our theorem.

国家哲学社会科学文献中心版权所有