首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:On a new generalization of Alzer's inequality
  • 本地全文:下载
  • 作者:Feng Qi ; Lokenath Debnath
  • 期刊名称:International Journal of Mathematics and Mathematical Sciences
  • 印刷版ISSN:0161-1712
  • 电子版ISSN:1687-0425
  • 出版年度:2000
  • 卷号:23
  • 期号:12
  • 页码:815-818
  • DOI:10.1155/S0161171200003033
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    Let { a n } n = 1 ∞ be an increasing sequence of positive real numbers. Under certain conditions of this sequence we use the mathematical induction and the Cauchy mean-value theorem to prove the following inequality: a n a n + m ≤ ( ( 1 / n ) ∑ i = 1 n a i r ( 1 / ( n + m ) ) ∑ i = 1 n + m a i r ) 1 / r , where n and m are natural numbers and r is a positive number. The lower bound is best possible. This inequality generalizes the Alzer's inequality (1993) in a new direction. It is shown that the above inequality holds for a large class of positive, increasing and logarithmically concave sequences.

国家哲学社会科学文献中心版权所有